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Abstract—This paper analyzes a possibility to reduce the
grid impact of electric vehicles (EV) by curtailing the charging
power in case of necessity. The focus lies on the development of
a decentralized charging algorithm with minimum communica-
tion needs. The only communication needed is uni-directional
communication to broadcast the current transformer status.
The goal is to evaluate if the local voltage at the charging station
is a sufficient indicator to keep the grid within its operation
boundaries instead of supplying every charging station with the
minimum voltage of the corresponding power line, which would
result in high communication needs. To reduce the impact of
the local voltage an urgency-factor is included as a further
input parameter. It determines how close the vehicles are to
the departure time and increases the charging power in case
of insufficient charge.

The proposed charging is based on a fuzzy controller. It
converts the described input parameters into a change of
charging power via a predefined control matrix. In the first
step, the input values are transferred into fuzzy-areas and
thereafter interpreted by the inference engine. In a final step,
the results of the inference engine are transformed into a change
of charging power by the point of gravity method. Additionally
to the fuzzy controller it is assumed that the vehicles are able to
support the grid voltage by changing the powerfactor between
0.9 underexcited and 0.9 overexcited alongside a cos(φ)(U)-
curve.

Deterministic models for the active load of households, heat
pump and photovoltaic systems were introduced in a previous
paper. The existing model is advanced by including reactive
power dependencies, car classes and more realistic charging
behavior of EV-owners.

The functionality of the charging algorithm is tested under
difficult grid conditions. A low voltage grid with long power
lines and a relatively small transformer in an urban envi-
ronment is chosen. At first it is shown that the grid can be
kept stable even at maximum EV-penetration without causing
limitations for the vehicle owners. In a second evaluation the
grid is further burdened with heat pumps close to the point of
the minimum voltage level even before including EV’s. In this
case the charging algorithm is not able to keep the voltage above
the voltage threshold because only local voltage measurements
are considered. Bi-directional communications could solve the
problem but grid expansion should be the preferred method
at this point because average EV-charging power is below
23% of its nominal value. Lastly the impact of additional
photovoltaic (PV) systems in the grid is evaluated. It can be
concluded that photovoltaic systems are not able to prevent
grid expansion caused by increasing load from heat pumps
and electric vehicles, due to the volatility of the technology.

I. INTRODUCTION

Originally low voltage grids were not designed to include
the additional load of charging electric vehicles (EV). Instead
of grid expansion, one possible solution could be to migrate
the charging power away from times of high grid load by an
appropriate charging algorithm. Chapter II shows the impor-

tance of communications to evaluate the grid stability which
at the same time leads to a more complex and costly design.
Therefore a charging algorithm is proposed which uses very
little communication (chapter III). For testing purposes, a
simulation model is introduced in chapter IV while taking
into consideration a deterministic model discussed in the
paper ”Probabilistic Modeling of Charging Profiles in Low
Voltage Networks” [1]. Afterwards the simulation results are
presented in chapter V and a final summary is given.

II. COMMUNICATIONS

Before deciding on the charging algorithm, general com-
munication constrains are evaluated. The goal is to create a
functional EV-charger with minimum communication effort,
to reduce potential communication errors and cost of the
necessary technologies.
The simplest solution for omitting communication is to use
the local voltage as indicator for the state of the grid. Unfor-
tunately this does not allow to get any reliably information
on the loading of transformers and lines. As the transformer
is typically the weakest link when it comes to overloading,
it has been decided to use additionally to the local voltage
the state of the transformer as parameter in the charging
algorithm. Thus a uni-directional communication link to
broadcast the transformer load to all participants via a radio
station is included.
When implementing bi-directional communications global
optimization becomes possible. Advantages lie in potentially
better results although come at the price of reduced scal-
ability compared to local charging algorithms. The power
quality is mostly known and could further be improved by
monitoring individual line load. General disadvantages of
bi-directional communications are a high increase in data
transfer and potential data protection issues.
This paper sets the focus on developing a charging algorithm
based on uni-directional communication to investigate if the
grid can still be kept inside the operation boundaries.

III. CHARGING ALGORITHM

As shown in a previous paper [1] maximum grid load only
occurs avery seldom. Instead of expensive grid expansion,
charging algorithms could mitigate additional impact of EV-
charging by load shifting. The proposed charging algorithm
is a combination of existing charging strategies by [2] [3]
[4].

Teng et al. [2] designed an algorithm based on Fuzzy-
Control. Fuzzy-Control calculates a percentile change of
the output value by evaluating multiple input parameters
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via a predefined fuzzy rule control matrix. At first the
input parameters are transferred into fuzzy areas inside the
fuzzifier. In the next step the areas are evaluated by the
inference engine and the fuzzy rules. Finally the values are
transferred into the output inside the defuzzifier.

The input parameters differ from Teng et al. Transformer
load, local voltage and a newly developed urgency factor are
used instead of local voltage and state of charge (SOC) of the
EV-battery. The transformer load is known to the charging
algorithm by the previously described radio signal. It is
broadcasted as a percentage of the maximum transformer
load. The local voltage is obtained at the charging station.
Both factors are used to evaluate the momentary grid impact.
The urgency factor is further introduced to reduce the impact
of the charging algorithm on EV-holders. The vehicle owner
expects that the vehicle is fully charged before the upcoming
journey. Therefore, when considering the same SOC of two
different cars, the one with closer departure time should be
charged faster to satisfy the owners. Equation 1 displays the
introduced urgency factor ui.

ui =
tC;min,i

trest,i
| tC;min,i < trest,i

ui = 1 | tC;min,i ≥ trest,i

tC;min,i =
BatCap

Pmax
· (SOCmax − SOCi)

(1)

The urgency factor is calculated by comparing the time
until departure trest,i with the minimum time to fully charge
the vehicle using maximum charging power Pmax. The
remaining charging capacity is calculated by multiplying
the EV-battery-capacity BatCap with the maximum state
of charge SOCmax minus the current state of charge SOCi.
Figure 1 shows an exemplary development of the charging
power until departure in case the car is not charged during
the displayed charging time. Once the urgency reaches 100%
it is at its maximum value. Unless the grid is close to collapse
the EV’s should be charged with maximum power no later
than this point.

Fig. 1. E.g. change of urgency factor when approaching departure time
without charging simultaneously.

For the grid to stay within the operation boundaries
the transformer load must not exceed 100%. Furthermore,
because the medium voltage grid is not considered in the
simulation, the nominal voltage is set to 1 p.u. on the
medium voltage level right before the transformer. Norm EN
50160 allows a maximum voltage deviation of 0.1 p.u. for

low and medium voltage grids combined. The deviation is
split equally for both voltage levels. Therefore the minimum
grid voltage has to be above 0.95 p.u. in the following
evaluation. In reality the level would be set to 0.9 p.u.

In the first step of the fuzzy control the input values are
transformed into two fuzzy-areas for each input value. The
fuzzy-areas range from negative big (NB) to positive big
(PB) while including negative small (NS), zero (ZE) and
positive small (PS). The value NB is equal to 0.955 p.u.
for the voltage control. No later than this point should the
charging power be reduced immensely. The minimum volt-
age for power reductions is set slightly above the minimum
level to account for safety margins for households drawing
power down the power line.
”Positive Big” is set to 1 p.u. for maximum EV-charge. The
values in between are set in an exponential manner. EV-
charging should only be curtailed when necessary. Al-Awami
et. al have shown that orthographic dependencies can be
reduced when using exponential instead of linear area sizes
proposed by Teng et. al for voltage control.

The start and end values for transformer load and urgency
factor are set similarly. Transformer load is uncritical until
reaching 80% (PB-Value) and gradually reduced until reach-
ing 99% (NB-Value). The remaining 1% are a safety margin
against dynamic changes. For the urgency factor, the value
for maximum charge (PB) is set to 100% and the value for
minimum charge to 45%. Vehicles with an urgency level
below this point only get charged when the grid is far from
its maximum operation point.

Fig. 2. Evaluation of Fuzzy-Control for local voltage values.

If, for example, the local voltage equals 0.962 p.u., the
corresponding fuzzy-areas are ”negative small” and ”zero”
(figure 2). Both are given values interpolated linearly be-
tween 0 and 1 alongside the area boundaries (NSV = 0.8;
ZEV = 0.2). Calculations for the transformer load and
urgency-factor follow the same pattern.

In the next step a one dimensional value has to be
calculated via the predefined control matrix and the inference
engine. The control matrix sets the correlations between
the input values. In case the transformer load is far from
its operational maximum (PBT), but the local voltage is
below 0.955 p.u. (NBV), then the charging power should
not increase regardless of the urgency-factor. Exemplary
dependencies between the local voltage and the urgency
factor in case of uncritical transformer load (PBT) can be
taken from table I. For example, if the voltage area is NSV,
the urgency area PSU and the transformer load PBT, the
resulting combined area is ZE1 as highlighted in table I.

In the fuzzifier two areas with corresponding values for
each input parameter were calculated. Each area is combined

2nd E-Mobility Power System Integration Symposium | Stockholm, Sweden | 15 October 2018



TABLE I
CONTROL MATRIX SHOWING DEPENDENCIES BETWEEN LOCAL
VOLTAGE (COLUMN) AND URGENCY FACTOR (ROW) WHILE THE

TRANSFORMER LOAD IS UNCRITICAL (PBT ).

Voltage/Urgency NBV NSV ZEV PSV PBV

PBU ZE PS PB PB PB
PSU NS ZE PS PB PB
ZEU NB NS ZE PB PB
NSU NB NS ZE PS PB
NBU NB NB NS PS PB

with the corresponding areas of the other input data as shown
in the previous example. In total eight combinations are
possible.
In the next step for each area a value is calculated by the
inference engine. The lowest value of all three combined
input parameters is chosen as seen in equation 2 to stabilize
the algorithm.

µi = min(µV ;µT ;µU ) (2)

The resulting areas are evaluated in the defuzzifier by a
simplified point of gravity method for trapezoids. Figure 3
visualizes the approach. Each area is given a percent change
of charging power. While ”negative big” leads to a 10%
decrease in charging power, ”positive big” is assigned a 10%
increase. The remaining areas are set linearly.
For visualization purposes, only two values PB=0.8 and
PS=0.2 are assumed as a result of the inference engine. The
areas are shaded in figure 3 according to the area type and
the height of the corresponding value. The resulting point of
gravity is at 9% and can be calculated by equation 3, while
Ni represents the number of areas taken out of the inference
engine. Therefore, the charging power would increase 9% of
the maximum charging power.

Fig. 3. E.g. simplified gravity method for trapezoids.

∆µ =

∑
((−10% + 20%

Ni
) · µmin,i)∑

µmin,i
(3)

The created control algorithm is extended by a reactive
power controller taken from [3]. It is assumed that all EV’s
are able to change the power factor between 0.9 underexcited
and 0.9 overexcited charging depending on the local voltage
level. Close to 1 p.u. a dead band is set to reduce the risk of
reactive power transfer between charging stations in case of
PV-integration. The control characteristic can be taken from
figure 4.

Fig. 4. Reactive control characteristic depending on local voltage.

IV. SIMULATION DESIGN

The developed algorithm will be evaluated in a low volt-
age grid with a relatively small transformer compared to grid
size and long power lines. The grid topology was designed
and validated by Kerber [5]. It consists of 9 power lines with
the longest containing 61 households over a length of 621
meters. A total number of 192 households are connected. It
is assumed, that the grid is already heavily loaded.

To evaluate maximum load impact all vehicles in the grid
are electrified. Each household owns an average of 0.89
vehicles [6]. Furthermore, three vehicle types are defined.
The vehicle types differ in battery size and electric energy
consumption and does cover a certain market share. The
classification follows a method designed by the Fraunhofer
ISI [7], but uses updated data. The specific values can be
taken from table II.

TABLE II
OVERVIEW OF THE DEFINED CAR CLASSES

cheap average expensive
Battery capacity [kWh] 21,1 40,0 81,4

El. energy consumption [kWh/100km] 16,8 22,1 25,8
Percentage of cars [%] 29,2 51,8 19,0

EV-charging efficiency can be taken from figure 5. For
the simulation it is assumed that the efficiency does not
drop below the values of 30% charging power compared
to the maximum charging power. In reality, if vehicles
have to curtail the charging power below this point, some
cars would stop charging completely. In consequence other
cars could keep charging with a minimum charging power
of 30%. Potentially resulting grid impact is neglected for
simplification reasons.

Fig. 5. Charging efficiency and power factor depending on the charging
power [8].
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Usually vehicles are not charged after each journey. Field
experiments of the University of Denmark have shown that
the average SOC of EV’s is 55% at the point of recharge [9].
Therefore, in the simulation, vehicles are connected to the
grid when the SOC at arrival is below 55% unless the time
until the next departure is less than 30 minutes. Additionally,
cars are charged earlier when the following journey cannot
be successfully completed without recharging.
It is assumed that cars are exclusively charged at home,
but in case the battery is empty during the journey, it is
charged externally to the point of successful trip completion.
This event is recorded for later analysis in case the trip was
unsuccessful due to insufficient SOC at departure.

Generally the simulation is based on methods introduced
in the paper ”Probabilistic Modeling of Charging Profiles
in Low Voltage Networks” [1]. It discusses the probabilistic
development of driving profiles and active power curves for
household loads, heat pumps and PV-systems. Each house-
hold has a characteristic load profile selected randomly via
Monte-Carlo-Method. The simulation is therefore repeated
1000 times with changing load profiles to increase statistical
significance.

Furthermore, this paper introduces reactive power depen-
dencies to improve the simulation results. The underexcited
power factor for EV’s charging at full capacity is 0.977
as shown in figure 5 taken from experiments conducted by
Zhang et.al [8]. In case of controlled charging the previously
described reactive power controller is used.

The power factor of the household load is derived from
experimental data from the HTW Berlin [10]. Figure 6
displays the power factor distribution. 39.1% of the net loads
in a household are overexcited. The rest is underexcited.
The power factors are randomly assigned to the simulated
households alongside the given distributions.
The underexcited heat pump power factor is distributed
uniformly between 0.7 and 0.8, due to high reactive power
consumption of usually installed asynchronous motors. For
photovoltaic systems the underexcited power factor is kept
constantly at 0.95 to evaluate the worse case scenario of
maximum voltage drop.

Fig. 6. Power factor distribution for underexited and overexited household
loads.

V. CALCULATIONS AND RESULTS

The general setup is designed to show boundaries of the
charging algorithm. An already heavily loaded grid is chosen
and evaluated on a cold winter day. Furthermore, maximum
EV penetration is assumed. At first no heat pumps and
photovoltaic systems are installed in the grid. In a second

evaluation additional impact of heat pumps an photovoltaic
systems is analyzed.
On weekdays vehicles are used more than on weekends,
while household load peaks are almost the same over the
course of a week. Therefore the highest grid impact is
expected during a working week and the simulation focus
set on this type of day.

A. Influence of EV’s
To evaluate the grid impact figure 7 displays the apparent

power over the course of a weekday at the transformer
substation. At first uncontrolled charging is considered (light
gray). As represented by the 99.73% (+3-sigma) graph the
transformer is in danger of overload from about noon until
midnight. Instead of the maximum values, the +3-sigma
values are chosen because for statistical analysis with a
limited set of data, the quantils have a higher significance
[11]. Extremely rare load combinations (less than 0.27% are
ignored.
By introducing the proposed charging algorithm the trans-
former load stays below 100% for all time intervals. The
transformer load does not exceed 90% due to later described
voltage restrictions.
Only in a few scenarios is the EV-charging power curtailed,
which can be seen when comparing the mean values for
controlled and uncontrolled charging. Both values vary by
less than 15%. After 10 pm the mean for controlled charging
is above uncontrolled charging because previously curtailed
energy is transferred to the EV’s to close the energy gap.

Fig. 7. Transformer load over the course of a weekday for controlled and
uncontrolled charging.

Along with transformer load, the voltage also has to be
kept within the boundaries of 0.95 p.u. and 1.05 p.u. to
keep the grid inside operational boundaries. In this sce-
nario, the upper value is never reached due to missing
photovoltaic(PV)-systems in the grid. The lowest local volt-
age is found at the household furthest from the transformer.
As seen in figure 8 it decreases down to 0.89 p.u. in the
case of uncontrolled charging. Already at 10 am charging
power is curtailed by the charging algorithm to keep the
grid voltage above 0.95 p.u. Curtailment due to transformer
overload is theoretically only needed after 12 am, therefore
in this scenario the algorithm is primarily voltage driven.

As previously shown, the charging-algorithm is capable of
keeping the transformer load and local voltage at a normal
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Fig. 8. Local voltage at the last household over the course of a weekday
for controlled and uncontrolled charging.

operating point for all time steps even when considering
maximum EV-penetration in an already heavily loaded grid.
Power line overload could still lead to grid failure as power
line evaluation is not part of the charging algorithm to
reduce costs and communication effort. The risk of power
line overloading is typically lower compared to the risk of
transformer overloading, as this is typically dimensioned for
higher simultaneously factors of the load compared to the
transformer. The heaviest loaded line is expected between
the transformer and the first household on the longest power
line with the most households connected. The power line
time dependency is similar to the transformer load due to
same influencing factors. Therefore, the power line stability
is assessed globally by the amount of time it is overloaded in
minutes per month. Without a charging algorithm the power
line is overloaded for 178.8 minutes per month on average.
No overload occurs when the charging algorithm is used.
Table III shows the results of the global evaluation not only
for power lines but also for the transformer and the voltage
level.

TABLE III
AVERAGE GRID OVERLOAD IN MINUTES PER MONTH FOR

TRANSFORMER, VOLTAGE AND POWER LINES DEPENDING ON
EV-PENETRATION AND THE CHOSEN CHARGING STRATEGY.

EV’s Algorithm Transformer Voltage Power line
0% NO 0,0 0,0 0,0

25% NO 0,0 29,6 0,0
25% YES 0,0 0,0 0,0
50% NO 6,3 366,0 2,6
50% YES 0,0 0,0 0,0
75% NO 243,5 1581,2 39,5
75% YES 0,0 0,0 0,0

100% NO 1227,3 3631,1 178,8
100% YES 0,0 1,3 0,0

In Table III the average time in minutes over all the
simulations for the specific grid impact factors is shown.
When applying the charging algorithm, the grid can be
kept within the operational boundaries to a very high
degree. Without the use of the proposed charging algorithm,
violations occur already at a 25% penetration level of
EV’s. Grid expansions would be needed early in the
transition towards more eco-friendly transportation. In
case the charging algorithm is applied, only at maximum

EV-penetration the average voltage level falls below the
threshold for 1.3 minutes. To understand the impact of an
on average 1.3 minutes overloading, individual simulations
are analyzed. Only in one of 1000 simulations the voltage
falls below the voltage threshold of 0.95 p.u. The maximum
detected voltage boundary violation per day is 30 minutes
long. EN 50160 allows voltage drops below the voltage
threshold for 5% of the time over the course of a week.
Even in case the voltage would be out of bounds for half
an hour each consecutive day the voltage violations would
only occur 2% of the time. Especially when considering
the remaining margin of the medium voltage grid the total
voltage drop of 10% should happen even more seldom.
Additionally in more than 99.73% of the simulations no
boundary violations occurred at all. Therefore it can be
concluded, that the grid can be operated within its allowed
boundaries, even for maximum EV penetration in already
heavily loaded grids in case the charging algorithm is used.

Next, the impact of power curtailment by the charging
algorithm on the EV’s usability is evaluated. The individual
average charging power is reduced exponentially with an
increasing amount of EV’s. At maximum EV-penetration it
is 24% lower than without curtailment (table IV).

As previously described the charging algorithm only takes
into account the local voltage level at each household instead
of the global minimum voltage. Therefore, EV’s close to
the substation are generally charged faster than cars further
downstream on the line due to gradually decreasing voltage
levels. The average urgency factor is slightly higher at the
end of the line due to the increased energy gap but does not
prevent different charging speeds depending on the location.
In case of maximum EV penetration, vehicles close to a
substation are charged up to twice as fast compared to cars at
the end of the line (table IV). Never the less cars approaching
departure time are charged faster than the average regardless
of the position.

As previously described, every trip which requires
recharging during the journey is recorded and divided by the
number of total journeys. This factor does not include trips
exceeding battery capacity because in this case recharging
depends on the EV-technology rather than grid limitations.
Independent of the charging strategy and EV penetration
level 3.2% of the trips will require recharging before comple-
tion. The charging power of 11 kW is sometimes insufficient
to recharge the vehicles to the desired capacity to complete
the next journey. The charging algorithm has no influence
on the car usability as long as the owners supply the correct
departure time because the urgency factor is essential to
enable cars at the end of the power line to charge quickly
when needed.
The urgency factor is important even when the minimum
grid voltage is known to all participants. Bi-Directional
Communications would equalize charging along the power
line at the cost of average charging power. Vehicles close to
the transformer would need to reduce their charging power
at a higher rate than cars at the end of the line could increase
the charging power. The necessity of the urgency factor
would even increase.
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TABLE IV
IMPACT OF CURTAILMENT ON CHARGING POWER AND LOCATIONAL

CHARGING DIFFERENCES.

EV’s Charging Power Location Impact
25% 10.6 kW 58%
50% 10.0 kW 131%
75% 9.3 kW 168%
100% 8.4 kW 192%

B. Further influence of heat pumps

As shown in the previous section, the simulated grid is
able to handle maximum EV penetration. Without EV’s, the
grid can contain heat pumps at up to 20% of the house-
holds. The power factor of asynchronous motors, which are
normally used in heat pumps, affects voltage stability to a
high degree. Hence the low number of heat pumps the grid
can endure until voltage issues occur. Under the additional
influence of heat pumps, it is then evaluated if the grid is
still able to cope with loads from controlled EV-charging.

As seen in figure 9 the transformer load is below 100% in
the case of no connected EV’s and also in case of maximum
EV-penetration as long as the charging algorithm is used.

Fig. 9. Transformer load over the course of a weekday for controlled
charging and no connected EV’s displayed for the 99.97% quantil.

The local voltage of the 0.27% quantil at the last house-
hold is already very close to the minimum value of 0.95 p.u.
even without additional load from EV-charging (figure 10).
Further EV-charging can lead to a voltage drop below the
lower voltage theshold. This is the greatest disadvantage of
uni-directional communications. Each charging station only
knows the local voltage level. In case of a high urgency
factor, vehicles charge as long as the voltage is above 0.955
p.u. as specified in the algorithm. In case the minimum
voltage has already been reached in the middle of the power
line, the remaining safety margin of 0.005 p.u. is not enough
to keep the voltage above the minimum value.

Heat pump inclusion into the low voltage grid does not
only have an effect on grid stability it also further influences
the SOC of the vehicles. Figure 11 displays the 0.27%
quantil for controlled charging with and without additional
heat pumps and uncontrolled charging. At the end of the
night the minimum SOC in case of controlled charging
without heat pumps in the grid is the same as in case
of uncontrolled charging. The curtailed energy during peak

Fig. 10. Local voltage at last household over the course of a weekday for
controlled charging and no connected EV’s for the 0.27% quantil.

hours is equalized at this point. It does not hold true
for controlled charging with addtional heat pumps. The
minimum SOC stays low throughout the day. Some cars,
especially at the end of the power line, only get charged
when approaching departure. Still the algorithm is able to
keep the number of unsuccessful trips due to insufficient
charge at 3.2%. Nevertheless, the vehicles are not available
for spontaneous use anymore. The average charging power
is reduced to 2.5 kW. Latest at this point, grid expansions
are inevitable.

Fig. 11. Minimum SOC over the course of a weekday for controlled
charging with and without additional heat pumps and uncontrolled charging.

C. Influence of photovoltaic systems

As a final analysis photovoltaic systems are included
into the grid. Up to 50% of the household can connect a
photovoltaic system, when considering the average German
PV-system size. Above this value the grid would face
overloading in summertime.

Table V shows the monthly time in minutes the grid is
operated outside the boundary values for 20% heat pump
penetration with and without EV’s or photovoltaic systems.
Voltage deviations in wintertime do decrease by more than
40% but do not vanish completly. Photovoltaic power pro-
duction is close to zero during cloudy periods or at night
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time. During these periods, photovoltaic power is not avail-
able to stabilize the grid. In general, photovoltaic systems
also have a positive effect on the average charging power
of EV’s. It increases from 2.5 kW to 3.2 kW. Therefore
photovoltaic systems support power quality up to a certain
point but do not prevent grid expansion because of increased
load.

TABLE V
AVERAGE GRID OVERLOAD IN MINUTES PER MONTH FOR

TRANSFORMER, VOLTAGE AND POWER LINES DEPENDING ON EV AND
PV-PENETRATION.

EV HP PV Transformer Voltage Power line
0% 20% 0% 0,0 13,2 0,0

100% 20% 0% 0,0 722,6 0,0
0% 20% 50% 0,0 6,5 0,0

100% 20% 50% 0,0 404,3 0,0

VI. CONCLUSION

The paper has shown, that the charging algorithm based
on a fuzzy controller is able to keep a critical urban grid
within the given boundaries for high penetration levels of
electric vehicles even when bi-directional communication is
not used. For the case where algorithm is used, the grid
would be outside operational boundaries even for a small
amount of EV’s.

In case of additional loads which heavily reduce the
voltage level, such as heat pumps, the charging algorithm
is not able to keep the voltage above the threshold anymore.
At this point grid expansion is necessary.

Bi-directional communications would theoretically enable
the charging algorithm to keep the voltage in balance but the
resulting charging power would not be enough to sufficiently
charge all vehicles. Therefore, after considering all results,
the introduction of a fuzzy controlled charging algorithm has
proven successful.
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Deutschland auf 1-sekündiger Datenbasis. HTW Berlin - University
of Applied Science, 2015.

[11] E. Dietrich and A. Schulze, Statistische Verfahren zur Maschinen- und
Prozessqualifikation. Carl Hanser Verlag, 2014.

2nd E-Mobility Power System Integration Symposium | Stockholm, Sweden | 15 October 2018




